汽车理论知识
传动系一般由离合器、变速器、万向传动装置、主减速器、差速器和半轴等组成。
一.传动系的功用
汽车发动机所发出的动力靠传动系传递到驱动车轮。传动系具有减速、变速、倒车、中断动力、轮间差速和轴间差速等功能,与发动机配合工作,能保证汽车在各种工况条件下的正常行驶,并具有良好的动力性和经济性。
二.传动系的种类和组成
传动系可按能量传递方式的不同,划分为机械传动、液力传动、液压传动、电传动等。
行驶系
行驶系由汽车的车架、车桥、车轮(注意)和悬架等组成。
汽车的车架、车桥、车轮和悬架等组成了行驶系,行驶系的功用是:
1.接受传动系的动力,通过驱动轮与路面的作用产生牵引力,使汽车正常行驶;
2.承受汽车的总重量和地面的反力;
3.缓和不平路面对车身造成的冲击,衰减汽车行驶中的振动,保持行驶的平顺性;
4.与转向系配合,保证汽车操纵稳定性。
转向系
汽车上用来改变或恢复其行驶方向的专设机构称为汽车转向系统。
转向系统的基本组成
(1)转向操纵机构 主要由转向盘、转向轴、转向管柱等组成。
(2)转向器 将转向盘的转动变为转向摇臂的摆动或齿条轴的直线往复运动,并对转向操纵力进行放大的机构。转向器一般固定在汽车车架或车身上,转向操纵力通过转向器后一般还会改变传动方向。
(3)转向传动机构 将转向器输出的力和运动传给车轮(转向节),并使左右车轮按一定关系进行偏转的机构。
转向系统的类型
按转向能源的不同,转向系统可分为机械转向系统和动力转向系统两大类。
制动系
汽车上用以使外界(主要是路面)在汽车某些部分(主要是车轮)施加一定的力,从而对其进行一定程度的强制制动的一系列专门装置统称为制动系统。其作用是:使行驶中的汽车按照驾驶员的要求进行强制减速甚至停车;使已停驶的汽车在各种道路条件下(包括在坡道上)稳定驻车;使下坡行驶的汽车速度保持稳定。
对汽车起制动作用的只能是作用在汽车上且方向与汽车行驶方向相反的外力,而这些外力的大小都是随机的、不可控制的,因此汽车上必须装设一系列专门装置
以实现上述功能。
分类:
(1) 按制动系统的作用
制动系统可分为行车制动系统、驻车制动系统、应急制动系统及辅助制动系统等。用以使行驶中的汽车降低速度甚至停车的制动系统称为行车制动系统;用以使已停驶的汽车驻留原地不动的制动系统则称为驻车制动系统;在行车制动系统失效的情况下,保证汽车仍能实现减速或停车的制动系统称为应急制动系统;在行车过程中,辅助行车制动系统降低车速或保持车速稳定,但不能将车辆紧急制停的制动系统称为辅助制动系统。上述各制动系统中,行车制动系统和驻车制动系统是每一辆汽车都必须具备的。
(2)按制动操纵能源
制动系统可分为人力制动系统、动力制动系统和伺服制动系统等。以驾驶员的肌体作为唯一制动能源的制动系统称为人力制动系统;完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的系统称为动力制动系统;兼用人力和发动机动力进行制动的制动系统称为伺服制动系统或助力制动系统。
(3)按制动能量的传输方式
制动系统可分为机械式、液压式、气压式、电磁式等。同时采用两种以上传能方式的制动系称为组合式制动系统。
制动系统一般由制动操纵机构和制动器两个主要部分组成。
(1) 制动操纵机构
产生制动动作、控制制动效果并将制动能量传输到制动器的各个部件,如图中的2、3、4、6,以及制动轮缸和制动管路。
(2) 制动器
产生阻碍车辆的运动或运动趋势的力(制动力)的部件。汽车上常用的制动器都是利用固定元件与旋转元件工作表面的摩擦而产生制动力矩,称为摩擦制动器。它有鼓式制动器和盘式制动器两种结构型式。
极品飞车11的调教说明~
如何了解汽车理论知识?
考试题型
名词解释动力因数P21
汽车牵引性能的主要指标。是剩余牵引力(总牵引力减空气阻力)和汽车总重之比。此值越大,汽车的加速、爬坡和克服道路阻力的能力越大。
同步附着系数P111前后轮同时抱死时的地面附着系数称为同步附着系数(线与I曲线交点处的附着系数)
利用附着系数:对于一定的制动强度z,不发生车轮抱死所要求的最小路面附着系数。汽车的转向灵敏度(稳态横摆角速度增益)P147
输出与输入的比值,如稳态的横摆角速度与前轮转角之比来评价稳态响应,这个比值
I曲线P109
前、后车轮同时抱死时前、后轮制动器制动力的关系曲线——理想的前、后轮制动器制动力分配曲线
挂钩牵引力P263车辆的土壤推力FX与土壤阻力Fr之差
C曲线P85燃油经济性—加速时间曲线通常大体上呈C形。
制动跑偏P102制动时汽车自动向左或向右偏驶。
f线组P111后轮没有抱死,在各种值路面上前轮抱死时的前、后地面制动力关系曲线
r线组P111前轮没有抱死而后轮抱死时的前、后地面制动力关系曲线。
比功率P75单位汽车总质量具有的发动机功率。
滑移率P92车轮接地处的滑动速度与车轮中心运动速度的比值。
侧滑P102制动时汽车的某一轴或两轴发生横向移动。
稳定性因数KP147【公式】表征汽车稳态响应的一个重要参数,单位s2/m2【公式】:K=
12
不足转向P147
K>0,【公式】分母大于1,横摆角速度增益sr比中性转向时要小,s
r不再与车速成线
形关系,asru
是一条低于中性转向的汽车稳态横摆增益线,后来又变为向下弯曲的曲线
过多转向P147
K<0,【公式】分母小于1,【公式】分母小于1,横摆角速度增益
sr
比中性转向时要大,车速增加,asru
曲线向上弯曲。
中性转向P147
K=0,L/usr
,横摆角速度增益与车速成线形关系,斜率为1/L
传动系的最小传动比P78
普通汽车没有分动器或副变速器,若装有三轴变速器且以直接挡作为最高挡时,就是主传动比i0;如变速器的最高挡为超速挡,应为变速器最高挡传动比与主传动比的乘积传动系的最大传动比P79
就普通汽车而言,imax是变速器1挡传动比ig1与主减速器传动比i0的乘积。汽车的静态储备系数P151
S.M.来表征汽车稳态响应。就是中性转向点至前轴距离a'和汽车质心至前轴距离a之差(a'-a)与轴距L之比值侧偏角P136
接触印迹的中心线aa不只是和车轮平面错开一定距离,而且不再与车轮平面cc平行,aa与cc的夹角。滑水现象P96
在某一车速下,在胎面下的动水压力的升力等于垂直载荷时,轮胎将完全漂浮在水膜上面而与路面好不接触。汽车的制动效能P97
汽车迅速降低车速直至停车的能力。通过性的几何参数P253
与间隙失效有关的汽车整车几何尺寸。包括最小离地间隙、纵向通过角、接近角、离去角、最小转弯直径。轮胎的侧偏现象P136
当车轮有侧向弹性时,即使FY没有达到附着极限,车轮行驶方向亦将偏离车轮平面cc 横摆角速度稳定时间P134?P157
进入稳态所经历的时间横摆叫速度达到稳定值95%~105%之间的时间?反应时间,横摆角速度第一次达到稳定值r0所需的时间。顶起失效P253
当车辆中间底部的零件碰到地面而被顶住时触头失效P253
当车辆前端或尾部触及地面而不能通过时汽车的间隙失效P252
由于汽车与地面间的间隙不足而被地面托住、无法通过的情况汽车的平顺性P203
主要是保持汽车在行驶过程中产生的振动和冲击环境对乘员舒适性的影响在一定界限之内,因此平顺性主要根据乘员主观感觉的舒适性评价。汽车的通过性P252
它能以足够高的平均车速通过各种坏路和无路地带(如松软地面、凹凸不平地面等)及各种障碍(如陡坡、侧破、壕沟、台阶、灌木丛、水障等)的能力。
汽车的制动性P89
汽车行驶时能在短距离内停车且维持行驶方向稳定性和在下长坡时能维持一定车速的能力汽车的操纵稳定性P130
在驾驶者不感到过分紧张、疲劳的条件下,汽车能遵循驾驶者通过转向系及转向车轮给定的方向行驶,且当遭遇外界干扰时,汽车能抵抗干扰而保持稳定行驶的能力。汽车的上坡能力P2
用满载(或某一载质量)时汽车在良好路面上的最大爬坡度imax。汽车的转向灵敏度(稳态横摆角速度增益)P147
输出与输入的比值,如稳态的横摆角速度与前轮转角之比来评价稳态响应,这个比值路面不平度函数P207
通常把路面相对基准平面的高度q,沿道路走向长度I的变化q(I)
辨析题
1.汽车加速上坡时的前后轴轴荷分别为
因此加速度对轴荷无影响。请评价此观点,并说明理由。
此观点是不正确的。因为前后车轮的法向反作用力由四个部门组成,其中包括的动态分量就包括加速过程中产生的惯性力、惯性阻力偶矩造成的地面法向作用分离。因此加速度对轴荷的是有影响的。
2.汽车主减速比小,其最高车速高,因此动力性好。请评价该观点。并说明理由。该观点是错误的。主减速比越小,发动机利用率越高,但后备功率越小,所以汽车动力性越差
3.汽车最高档传动越小,其最高车速高,因此动力性好。请评价该观点。并说明理由。此观点是正确的。行驶车速高,比功率大,最高档后备功率也大,动力性好
4.对同一辆汽车,装有ABS的制动距离总是比没装ABS的短。请评价该观点,并说明
理由。
答:该观点不完全正确,ABS汽车制动前具有的惯性动能,制动中所受的外部阻力和所经历的制动过程虽与同时抱死制动汽车无本质区别,但在持续制动阶段,增加了路面阻力系数与车轮滑动率S有关的因素;并非所有ABS汽车都能缩短制动距离,只有当持续制动阶段车轮滑动率为15%?20%,可取峰值附着系数时,同等条件下路面摩擦阻力最大,其制动距离才最短.
5.加速时汽车应提前挂入高档是因为高档的变速比小,车速高而减小加速时间。请评价
该观点,并说明理由。
答该观点不正确,加速时挂低档传动比比较大,扭矩大,所以驱动力比较大,加速度也比较大,所以加速时间比较短。
6.在雨天,制动时车轮不能抱死,因为会发生侧滑。请评价该观点,并说明理由。答:该观点不完全正确。在雨天,由于地面湿滑,车轮制动时,滑动率s较大,若车轮抱死,将会出现跑偏或侧滑,故制动时车轮不能抱死。只有后轮先抱死或后轮比前轮抱死时间早0.5s以上且车速超过某一数值时,汽车才会发生侧滑。若前轮先抱死,汽车仍可直线行驶,只是失去转向稳定能力。故发生侧滑是有条件的,不能以偏概全,即抱死就会发生侧滑。
7.有人说雨天只要车速不高,车轮抱死也不会发生侧滑。请评价该观点,并说明理由。
有人认为汽车起步后要尽快换入高档。请评价该观点,并说明理由。
8.雨天只要控制车速不要太高,紧急制动时就不易发生侧滑。请评价该观点,并说明理
由。P106
1.制动过程中,若是只有前轮抱死或前轮先抱死拖滑,汽车基本上沿直线向前行驶(减速停车);汽车处于稳定状态,但丧失转向能力。2.若后轮比前轮提前一定时间先抱死拖滑,且车速超过某一数值时,汽车在轻微的侧向力作用下就会发生侧滑。路面越滑、制动距离和制动时间越长,后轴侧滑越越剧烈。
10.现代轿车大量采用前置发动机不知方案的原因是前置发动机布置方式较后置发动机方
案更有利于汽车动力性的发挥。请评价该观点,并说明理由。11.对于未装ABS和EBD的汽车。只有在某种附着系数的路面上制动时才有能出现前后轮
同时抱死的情况。请评价该观点,并说明理由。P111
对。根据同步附着系数,前后制动器制动力为固定比值的汽车,只有在一种附着系数,即同步附着系数路面上制动时才能使前后车轮同时抱死。
12.制动时,跑偏和侧滑同样危险,因为驾驶员都不能控制和纠正。请评价该观点,并说明
理由。详见 P105-P106
13.有人认为汽车装ABS的唯一目的是为了缩短汽车的制动距离。请评价该观点,并说明
理由。P120
ABS除了在制动过程中防止车轮被制动抱死,还提高汽车的方向稳定性和转向操纵能力,缩短制动距离。
计算题
1.有一辆后驱汽车,总质量2500kg,发动机最大扭矩200Nm,前轴负荷35%,主传动比
4.55,一档3.79,二档2.17,三档1.41,四档1.00,传动系的传动效率为0.89,车轮滚动半径0.3m,该车能否通过滚动阻力系数为0.2,附着系数为0.5的沙滩,用几档?不计空气阻力。
2.某货车总质量为9500kg,CdA=4m*m,要求达到的最高车速为90Km/h时,滚动阻力系
数f=0.01+0.000056Ua,nt=0.85.
(1)90km/h时,滚动阻力消耗的功率Pf和空气阻力消耗的功率Pw和为多少?(2)的发动机额定功至少应为多少?
3.一轿车驶经由积水层的一良好路面公路,档车速为100km/h时要制动,问此时有无可能
出现滑水现象而出现丧失制动能力?轿车轮胎的胎压为179.27kpa。4.二自由度汽车模型的有关参数如下:
总质量m=1818.2kg,绕Oz轴转动惯量Iz=3885kg,轴距L=3.048m,质心至后轴距离
b=1.585m,前轮总侧偏刚度k1=-62618N/rad,后轮总侧偏刚度k2=-110185N/rad,转向系总传动比i=20。
求(1)稳定性因素K,特征车速uch
(2)静态储备系数S.M.,侧向加速度为0.4g时的前后轮侧偏角a1-a2与转弯半径的
比值R/R0。
(3)车速u=30.56m/s时,瞬态响应的横摆角速度波动的固有频率w。阻尼比、反应
时间和峰值反应时间。
5.一汽车的变速器要设计为5个前进档,其最小传动比为0.86,而最大传动比为3.79,试
确定各档的传动比。
6.以汽车的车身部分的振动的固有频率为1Hz,在车速为100km/h时,引起汽车侧偏角共
振的路面不平度波长为多少?
7.要求车身加速度超过1g的概率为P=1%,求车身加速度的标准差。
8.某汽车悬架弹簧动挠度fd的标准差为3cm,现要求动挠度超过限位行程[fd],即撞击限
位的概率P=0.3%,求[fd]。
表格
9.有一轿车,悬挂质量的偏频为1.2Hz,车辆偏频为15Hz,请问该车以120km/h行驶时,
引起车轮共振和悬挂质量共振的路面波长各为多少?
简答题
1、发生后轴侧滑有何条件?为什么后轴侧滑比前轴侧滑危险?
答:在制动形式条件下,若只有后轮抱死或提前一定时间抱死,在一定车速条件下,后轴将发生侧滑;
前轴侧滑失去转向能力,后轴侧滑会产生剧烈的回转运动,严重时,使车头调头。
2、汽车变速器的传动比应如何分配?为什么?答:按等比级数分配。
原因:1、使离合器能够无冲击的接合,有利于汽车起步和加速2、能够充分利用发动机提供的功率,提高汽车的动力性3、便于和副变速器结合构成更多档位的变速器对于档位较少的变速器,较高档位相邻两档间的传动比应小些,特别是最高档与次高档之间应更小些
原因:各档利用率差别很大,且汽车主要是用较高档行驶的
3、简述轴距对4X4和4X2汽车前后轮过台阶能力的影响。4X4过台阶能力比42强,L/D越小,a/L越大,(hw)/D越大,过台阶能力就越强。轴距越小,不容易发生顶起失效,容易过台阶
4、地面制动力与制动器动力有何区别和联系?
汽车的地面制动力,首先取决于制动器制动力,但同时又受地面附着条件的限制,所以汽车只有具有足够的制动器制动力,同时地面又能够提供较高的附着力时,才能获得足够的地面制动力
5、某汽车平时能过某坡,当路面结冰时不能通过该坡,这是为什么?可采取什么措施来使该车通过该坡?
原因:路面结冰后,附着系数降低,由F=Fz*得附着力也跟着降低,汽车驱动轮在不滑转工况下所能发挥的驱动力降低,因而不能通过该坡
措施:降低车速,牵引力,撒稻草等到冰面上,增大轮胎表面花纹,减小驱动力
6、跑偏和侧滑有何区别与联系?
答:制动时汽车自动向左或向右偏驶称为“制动跑偏”,侧滑是指制动时汽车的第一轴或两轴发生横向移动。联系:严重的跑偏有时会引起后轴侧滑,易于发生侧滑的汽车也有加剧跑偏的趋势。
7、如何确定变速器的最大传动比?
答:三个方面:满足汽车的最大爬坡度max,满足汽车的最低稳定车速uamin;满足汽车加速时间的要求;满足汽车的附着条件
8、简述质心位置对4X4和4X2汽车前后轮过台阶能力的影响。4X4 a/L越大时,汽车前轮越容易越过较高的台阶;后轮的越障能力与汽车参数无关,当a/L较小时,后轮越过台阶的能力比前轮大。4X2的越障能力比4X4差的多
8、什么叫制动效能的恒定性?产生制动效能热衰退的原因是什么?答:制动效能的恒定性是指抗热衰退性能。
原因:摩擦副材料,高温时,摩擦片的摩擦因素会有很大的降低,结构不合理
9制动器齐作用时间t2与哪些因素有关,如何在设计上降低t2?驾驶员踩踏板的速度,制动系结构形式措施:采用液压制动系的制动器
10在由低档换入高档时,为何要提前换入高档,而减速时,为何要推迟换入低档。
答:这个跟变速箱的特性有关,他是靠液压油工作的。汽车换挡时会有一定的换挡冲击,所以自动变速箱厂商为了提高汽车的驾驶舒适性。结合变速箱的工况发现,当抵挡换高档提前挂入能减小换挡冲击。高档换抵挡推迟挂入能减小冲击。一句话,这样做事为了减小换挡冲击,提高驾驶舒适性。
11请解释加速抬头现象。
答:车辆加速时,汽车后轴载荷增加,前轴载荷减小,使汽车后仰,出现抬头现象。
12请解释制动点头现象。
答:车辆减速,汽车后轴载荷增加,前轴载荷减小,使汽车前倾,出现制动点头现象。
13如何区分制动跑偏和侧滑?
(1)制动跑偏:制动时汽车自动向左或者向右偏驶。
产生原因:a、汽车左、右车轮,特别是前轴左、右车轮(转向轮)制动器的制动力不相等;b、制动时悬架导向杆系与转向系拉杆在运动学上不协调(互相干涉)。(2)侧滑:制动时汽车的某一轴或两轴发生横向移动。
14为何高级轿车一般采用前置发动机后轮驱动,而经济型轿车采用前置发动机前轮驱动?经济型轿车发动机的功率本来就有限,如果在传动系统中再损失一些一部分动力,那么它的实际加速性会明显降低,高级轿车的发动机功率大,则没有这类问题。
15空车、满载时汽车的动力性有无变化,为什么?
答:满载时,滚动阻力Gf、上坡阻力Gi、加速阻力都会相应的增大,后备功率减少,动力性较差;空载时较快。
空车、满载时汽车的动力性有无变化,为什么?
答:有变化,汽车的动力性指汽车在良好路面上直线行驶时,由纵向外力决定的所能达到的
平均行驶速度。汽车的动力性有三个指标:1)最高车速2)加速时间3)最大爬坡度且这三个指标均于汽车是空载、满载时有关。
16、如何从改进底盘设计方面提高汽车的经济性?
答:缩减轿车总尺寸和减轻质量。大型轿车费油的原因是大幅度地增加了滚动阻力、空气阻力、坡度阻力和加速阻力。为了保证高动力性而装用的大排量发动机,行驶中负荷率低也是原因之一。汽车外形与轮胎。降低值和采用子午线轮胎,可显著提高燃油经济性。
17、车开的慢,油门踩得小却不一定省油,为什么?
答:由燃油消耗率曲线知:汽车在中等转速、较大档位上才是最省油的。此时,后备功率较小,发动机负荷率较高燃油消耗率低,百公里燃油消耗量较小。
18、发动机省油,汽车不一定省油,为什么?答:发动机负荷率高只是汽车省油的一个方面,另一方面汽车列车的质量利用系数大小也关系汽车是否省油。
19、从操纵稳定性方面分析,为什么现代轿车很少采用后置发动机的?后置发动机前轮附着力小,高速时转向不稳定,影响了操纵稳定性。
20、从动力性方面分析为什么货车不采用前置发动机前轮驱动?
答:前置发动机前轮驱动启动、加速或爬坡时,前轮负荷减少,导致牵引力下降;
后置发动机重量集中于汽车的后部,发动机距驱动轴很近,因而驱动轮负荷大,启动加速时牵引力大,且传动效率高,燃油经济性好
21如果你是汽车设计人员,你将如何保证所设计的汽车具有良好的燃油经济性?(1)缩减轿车总尺寸和减轻质量
(2)发动机:提高汽油发动机的热效率和机械效率扩大柴油发动机的应用范围增压化采用电子控制
(3)传动系:档位增多、无级变速器
(4)汽车的外形与轮胎:子午线轮胎的综合性能较好
22、如果你是驾驶员,你将采取什么措施来提高燃油经济性?
(1)行驶车速:使汽车在接近于低速的中等车速行驶同一道路和车速下,档位低,则后备功率高,油耗增加
(2)档位选择:档位越低,油耗越多,选择适当的档位,选好换挡时刻
(3)正确的保养与调整:前轮定位要正确,胎压正常,制动器摩擦片与制动鼓有适当的间隙
23、为何大多跑车都采用中置发动机后轮驱动布置形式
汽构上册 P15由于汽车采用功率和尺寸很大的发动机,将发动机布置在驾驶员座椅之后和后轴之前有利于获得最佳轴荷分配和提高汽车的性能。24、什么是EBD?为何买车时要选装有EBD系统的车型?
电控P186电子制动力分配系统,EBD能够根据车辆载荷、道路附着条件和制动强度等因素的变化情况,自动调节前、后轴的制动力分配比例,提高制动效能,并配合ABS提高制动稳定性。
判断改错题
汽车制动器制动力总是等于地面制动力()
汽车行驶时,发动机发出的功率始终等于滚动阻力,坡道阻力,加速阻力,空气阻力四项阻力之和()
滑动附着系数出现在滑动率为15%到20%时()
对于单横臂独立悬架:在小侧向加速度时,如汽车右转弯行驶,则车轮向右倾斜()对于车身,车轮振动系统,车身固有频率小于低的主频率()1.汽车行驶时所遇到的加速阻力作用在汽车的质心。()
2.汽车行驶时,发动机发出的功率始终等于滚动阻力,坡道阻力,空气阻力和加速阻力四项阻力所消耗的功率之和。()
3.汽车制动器制动力总是等于地面制动力。()
4.汽车在道路上行驶时,其最大制动减速度主要取决于汽车制动初速度的大小。()5.对于双单横臂独立悬架,如汽车左转弯行驶,则车轮向右侧倾斜。()
6汽车在道路上行驶时,其最大制动减速度主要取决于汽车制动初速度的大小。X 7滑动率越大,轮胎和道路之间的制动力系数就越大。X
8某汽车的同步附着系数为0.5,路面附着系数为0.7,此时前轴利用附着系数有意义,而后轴附着系数没有意义。X
9一般情况下,前轮驱动汽车的附着利用率大于后轮驱动汽车的后轴利用率。X 10同步附着系数与地面附着特性有关。X
11汽车制动时发生侧滑是汽车技术状况不佳,经维修调整可以消除。X 12地面制动力的大小取决于汽车具有足够的制动器制动力和较高附着力。13雨雪天汽车下长坡,驾驶员常需长刹车。X 14路滑时不应急刹车。
了解汽车基本知识
答:一般常用汽车基本结构都是有四部分组成的,这四部分是:发动机、底盘, 车身和电器设备部分。
2.四行程汽油发动机由那几部分构成?
答:四行程汽油发动机由机体、曲柄连杆机构、配气机构, 冷却系、润滑系、燃油系和点火系(柴油机没有点火系)等组成。
3.四行程汽油发动机是怎样进行工作循环的?
答:发动机的工作过程分进气、压缩、作工、排气四个过程。四行程发动机是将这四个过程在活塞上下运动的四个行程内完成的。进气行程:进气门开启,排气门均关闭。随着活塞从上止点向下止点移动,活塞上方的容积增大,气缸内压力降低,产生真空吸力。把可然混合气体吸入气缸。压缩行程:进气门、排气门均关闭,活塞从下止点向上止点移动,把混合气体压至燃烧室。作工行程:压缩终了时,进气门、排气门仍关闭,火花塞发出电火花,点燃可燃混合气,燃烧后的气体猛烈膨胀,产生巨大的压力,迫使活塞迅速下行,经连杆推动曲轴旋转而作工。排气行程:排气门开启,进气门关闭,活塞从下止点向上止点移动,将废气排除。
4.机体与曲柄连杆机构的作用及主要零部件有哪些?
答:机体与曲柄连杆机构的作用是:将燃料在气缸中燃烧时燃气作用在活塞顶上的压力,借助连杆变为曲轴的扭矩,使曲轴带动工作机械做功,机体与曲柄连杆机构的主要零件有气缸体、气缸盖、活塞、连杆、曲柄、飞轮等。
5.说明配气机构的作用及组成?
答:配气机构的作用根据工作需要,适时开闭进、排气门,及时把可燃气引进气缸和排出废气。同时,驱动分电器、汽油泵等机件进行工作。配气机构主要零件包括:进气门、排气门、凸轮轴驱动机件等。
6.说明冷却系的作用级组成?
答:冷却系作用是:把高温机件的热量散到大气层中去,以保持发动机在正常温度下工作。水冷却系一般由发动机的水套、水泵、散热器、风扇、节温器、水温表和放水开关等机件组成。
7.发动机正常水温是多少?如何控制水温?
答:水冷式发动机正常工作温度应为80—90度。发动机的温度以解放CA10B型汽车为例,可根据发动机的温度,拉出(即打开)或推出(即开闭)驾驶室内的百叶窗操纵手柄,改变进入散热器的空气量,从而调整发动机温度。
8.润滑油的作用是什么?
答:润滑油作用:润滑各摩擦部件,减小摩擦阻力,可降低动力消耗。冷却作用:机油循环流动,可将摩擦热带走。降低机件的温度。清洗作用:将机件表面上的杂质冲走,减少磨损。密封作用:在活塞与气缸壁之间保持油层,可增加密封性。
9.如何检查发动机的机油油面?
答:检查油底壳的机油油面时,应把汽车停放在较平坦的地方,发动机停止运转并等少许时刻后,把机油尺拔出,擦去表面上的机油,再从机油尺管口插到底,从而判断出机油量的多少。
10.说出汽油机和柴油机正常机油压力是多少?
答:在驾驶室仪表板上观察机油压力表:汽油发动机的正常机油压力为200—500千帕;柴油发动机为600—1000千帕。
11.化油器有哪几种装置?作用是什么?
答:化油器的构造可分五种装置:答:起动装置;怠速装置;中等负荷装置;全负荷装置;加速装置。化油器的作用是:根据发动机在不同情况下的需要,将汽油气化,并与空气按一定比例混合成可燃混合气。及时适量进入气缸。
12.膜片气油泵是怎样工作的?
答:吸油:当凸轮转动时偏心轮顶动泵油摇臂。拉下泵膜,弹簧被压缩,此时泵膜上方容积增大,压力降低,产生吸力,使出油阀关闭,汽油由油箱经汽油滤清器进油阀,进入泵室。送油:凸轮继续转动,偏心轮转过后,共油摇臂弹簧推回,泵膜弹簧将泵膜推向上方,泵室内的汽油便从出油闪压送到化油器浮子室。
极品飞车11职业街头赛里的赛车怎么装备
前言
当我们为了提高车辆的性能而进行种种的改装,即使所用的改装套件都是正确而恰当的,但是如果不能做出最恰当的调校,那么所获致的效益就得大打折扣,引擎的调校是如此,底盘悬吊的改装更是如此。举一个实际的案例,有一部加了全部顶级套件的车,并且换上了大尺寸、低扁平比的高性能轮胎,但是加速度由原来的0.89g变成0.90g,仅仅只有0.01g的改善,但是经过细心的测试后,对胎压、凸轮轴、防倾杆和变速箱做了适当的调整,加速度却提高到了1.0g,不过却没有更换任何一项顶级部品,这说明了正确的调校要更换高性能改装套件来得重要得多。
悬挂系统《赛道车很需要,直线车仅胎压和车高有用》
众所周知,改装悬吊系统对于提升车辆整体的操控性有相当大的帮助。
悬吊系统是支持车身重量,并缓和及吸收路面不平整所导致上下振动的机构,藉由减震筒与弹簧的组合防止不当振动传入车身,来达到乘坐舒适性、改善行驶操控的目的。而因弹簧的系数与减震筒的阻尼软硬不同,会呈现出各种不同的属性。
悬吊连结车身和轮胎间的主要机件就是避震和防倾杆。
避震器
避震器是用来抑制弹簧吸震后反弹时的震荡和吸收路面冲击的能量。
避震器越硬重量转移的速度越快,重量转移越快则车身子的转向反应也越快。
在极品飞车里主要应用为进弯和出弯时车身重量转移的速度会影响操控的平衡。
原理:车身重量转移的速度是由避震器所控制,改变避震器在压缩和拉伸行程的速度可改变车身动量转移的速度。过弯时转动方向盘,轮胎会产生一个滑移角,进而产生转向力,这力量作用在滚动中心和重心,然后导致车身重量转移,车身产生滚动。此时弯外轮的转向力会随着滑移角的增大及车身重量的转移而加大,车子在达到最大转向力及完成重量转移后会建立一个过弯姿势,由於避震器控制重量转移的速度,因此也会影响建立过弯姿势的速度。
避震器的设定:
加硬避震器和弹簧可以抑制侧倾
是以较软的弹簧,配上较硬的可调式避震器,以避震器的硬度补弹簧强度的不足,加上可自由调整的阻尼,获得高度的路况适应性。
防倾杆
防倾杆最重要的功能就是达成操控的平衡和限制过弯时的车身侧倾以改善轮胎的贴地性。
防倾杆和弹簧所提供的的防倾阻力是相辅相成的,而且防倾阻力是成对发生的,也就是说车头的防倾阻力是和车尾的防倾阻力伴随发生,但是由于车身配重比例以及其它外力的作用的关系会使得前后的防倾阻力并不平衡,如此一来便会直接影响车身重量的转移和操控的平衡。
防倾杆的设定:
杆身的长度越长则硬度越软,反之杆臂的长度越长却会增加其硬度。太软的防倾杆在独立悬吊的车会造成过弯时过多的外倾角,减少轮胎的接地面积,太硬则是会造成轮胎无法紧贴地面,影响操控性。对弯内轮来说,防倾杆对车轮施的力和弹簧对车轮施的力是方向相反的,弹簧产生的力可把车轮压回地面,而防倾杆却会使它离开地面。(假如防倾杆太硬会减少把车轮压回地面的力,如果这种情况发生在驱动轮,可能会使得出弯加油时弯内轮的抓地力变小,造成轮胎的空转。)
倾角
理论:
假如一部车过弯时最极限的车身滚动会导致悬吊系统产生一定角度的外倾角变化,我们就需要这个角度的外倾,以便使轮胎在极限过弯时维持充分的轮胎贴地性。如果外倾角过大,会破坏所谓『瞬间循迹性』,也就是从车子直线到弯道或从平路到倾斜路面的瞬间的循迹性。这对操控平衡、过弯速度、进弯和出弯的的转向灵敏度都会有负面的影响,更会影响弯中的刹车和加速表现。
后倾角的主要功能是使车辆保持向正前方行驶。
倾角的应用:外倾角绝对不推荐使用正值。后倾角影响转向
束角
也称轮胎偏角。论坛有人说往“正极”会增加轮胎偏角的角度,使得轮胎很“八”字,以获得高速稳定性。
作者:221.234.18.* 2008-12-9 15:25 回复此发言 2游戏技术贴(转)╀┿┾┽┼改装心得和对<<极品飞车11>>改装看法╀┿ 一档时高的齿轮比,用意就相当明显:起步时会很有力。这样的设计是有助于起步冲刺;而各档位的齿轮比或档位间齿比的差异,都是影响车子的运动性能,高齿比是为了扭力,而高档(四档或五档)的低齿比就是为了高速行驶与引擎提速的发挥了。
此外还要考虑换档时的动力差异不致于过大。那到底要如何设定齿轮比呢?因为齿比过高,就转的慢;齿比太低又有扭力不足的可能,各档齿比又不能差异过大。一般说来,变速箱的各个挡位之间都是成等差数列的,也就是说,各个挡位之间的齿轮比差别在理论上是基本相等的,一般只会根据需要做适量的修改。
终传比(主减速比)
总传动比的不同,决定了车辆的加速能力或者极速表现,二者有一定的矛盾性,有时难以兼顾。变速箱的基本作用是充分的发挥出发动机的动力,还有一个重要作用就是,决定车辆的行驶极速和加速表现。用较大的齿轮比不仅能提高车辆的轮端扭矩,还能有更为出色的加速表现。只要发动机本身的转速提升够快,用大齿比的1挡猛踩油门,肯定能获得最佳的推背感,同理,后面的每个挡都尽量的用大齿比,那么车辆的加速性能将非常出色。但这种过于密齿的变速箱虽说有凌厉的加速表现,却没有较高的的极速,这就是一把双刃剑,所谓鱼与熊掌不可得兼。这就是变速箱的另一功用,是选择加速,还是极速,还是中和加速和极速。但对于一般的汽车改装来说,去调变速箱太麻烦,直接更换最终传动比齿轮也能在一定程度上调整车辆的加速性能或是极速。
终比增加15%,便可立刻把全挡位内的发动机转速拉高15%,缩短发动机从低转速提升到动力区甚至是最大马力峰值点所需的时间,直接地改善车子在每挡上的提速能力。
应用:
多数跑车和运动型车(ff车)的发动机都是典型的高速发动机。这类发动机的扭矩曲线一般都比较陡峭,有些还会设计多个峰值,峰值区间较窄,其中最大扭矩一般是出现在发动机高转时,也就是车辆在后段发力。无论对于何种发动机,对于变速箱的匹配来说,尽可能的让升挡以后的发动机转速保持在扭矩充沛的区域,是最合适的。这种高转发动机的最高扭矩出现的比较晚,而且最高扭矩持续的时间也比较短。也就是说很多高转速发动机,其最大扭矩或功率看似非常可观,但实际上出现的转速范围段非常短,那么如果这个时候我们给它匹配一个稀齿比的变速箱,发动机转速冲上5500转以后升挡,然后转速会落到3000转,那此时还何谈加速性?如果为了使换挡后的转速落在4000转以上,我们在6500转换挡,那5500转到6500转这个区域,扭矩也很小,同样无法获得足够的加速性。显然,这个齿比的变速箱是无法满足这类发动机的性能需求的。那么我们给它换个变速箱,换个密齿比的,加速到5500转以后恰好到达扭矩峰值的末端,然后升挡,此时转速能保持在4000转以上,那么就可以充分利用这个高扭矩的平台,将高转速发动机的性能充分发挥出来。
低转速大扭矩的发动机(fr车),配备密齿比变速箱可能适得其反,不利于性能的发挥,而且提升了驾驶难度。这类发动机的扭矩曲线一般都比较平滑,且持续的区间比较宽泛。我们假设一台从2000转开始就能达到或接近最大扭矩,同时可以将这个扭矩数值一直持续到5000转的发动机。此类发动机与高转发动机的最主要区别是有一个宽广的扭矩平台,而且可以在前段发力。这类发动机在整个驾驶过程无法寻找到令人兴奋的加速点,注重平顺性此时尤为重要。
仍然以前面举例的两个变速箱为例,当我们给它配备稀齿比的变速箱的时候,加速到5000转然后升挡,此时转速落在2500转左右,恰好是在其最大扭矩的范围内,可以在这个挡位从2500转一直又加速到5000转。而如果我们给它配备一款密齿比变速箱呢?当我们同样加速到5000转以后升挡,发动机转速落到3500转。没错,现在仍然是最大扭矩区域,但这样白白浪费了前面的这1000转,在这个挡位上车辆只能从3500转加速到5000转,加速区间比前面的变速箱少了1000转。哪一个的性能更好,就不用说了吧?齿比更稀的变速箱反而可以获得更好的加速性,别忘了,密齿比变速箱在这个时候还在不停的倒腾挡位呢!所以,对于转速始终较低,在前段发力的发动机,匹配低挡位变速箱反而更适合。
这也是为什么FR车在同样马力的情况下更适合加速赛的的原因。
刹车
刹车是一项技术活,刹车理想的状态是前刹车『恰』比后刹车早死锁。也就是前轮偏重。
刹车油压:
也就是刹车距离长短的调解。个人觉得在游戏里还是松油门更好些。改装刹车系统时要注意平衡前后制动分布,过大的制动力容易令轮胎抱死。如果后制动力过大,会造成刹车时后轮抱死甩尾。
而且注意一点就是轮胎的抓地力极限就是刹车性能的最高极限,其他一切配备都只是为了接近这个极限,而不是把这个极限提高。
轮圈
轻轮圈的旋转惯性较钢制重轮圈小得多,所以装上合金轮圈可令汽车的加速、刹车、转弯都更加灵敏,就像我们脱去笨重的皮鞋改穿充气的超轻跑步鞋去跑步一样,轻的轮圈会让发动机提速更爽,所以有车轮减轻1公斤相当于车身减轻5公斤的这种说法,这可一点也不夸张。由于车重对于车的平地加速、刹车、转弯性能都有负面影响,所以车身在减重之余,非簧载质量总是越轻越好。
在轮圈改装的整体尺寸方面有一种说法,意思即是在原厂轮圈基础上把轮圈直径和宽度同时加大1英寸或同时加大2英寸。
当你考虑换轮圈更改前,必须清楚这会给车的性能带来两方面的影响:一是车轮向外移之后,由于杠杆比的改变,悬挂就会显得软了;二是车的转向特性会发生变化,增大了前轮轮距,会增加转向不足的特性。
最后要谈的是轮圈的大小问题,一般来说较宽的轮胎/轮圈组合可以给车子带来更好的操控性,但直径较大的轮胎/轮圈组合却没有什么好处,反而会增加车子的非簧载质量 这是一个很错误的说法,正极角度越大,越会降低车辆在直线行走的速度。所以适当调校。
胎压
胎压的高低会影响车高
不同车胎的胎压与抓地力的关系曲线。过高和过低都会影响你的——抓地力。胎压相对越低,车轮橡胶与地面接触的面积就越大,能产生越大的抓地力。
至于怎样找到最佳的胎压,哈哈,哈哈,我也不知道.而且我一直有个疑问,那就是,轮圈的选择是否真正对汽车有影响。我会在以后的帖子里阐述。
转向反应比
赛车对方向改变的反应,和后倾角相辅。
引擎
引擎是一部车子的心脏,对动力性能的提升最有效的方式就是引擎系统的改装,同时也是最难的改装之一。
凸轮轴
凸轮轴可视为气门机构的灵魂,所以凸轮轴也是也是车改装重点之一
道理相当复杂,简单的说凸轮正时调后(也就是软?),会具有较佳的高转速动力表现,但在低转速运转时,将因为气缸真空度不足及吸入油气的流失而造成容积效率降低,导致低转速动力不足、怠速运转不稳的后遗症。
凸轮正时调前(也就是进阶?)正好相反.
实际应用:直线赛应适当把凸轮正时调软。提高气门扬程也可提高容积效率。
涡轮增压
涡轮增压机分两种:发动机涡轮增压(自然吸气)和机械增压。
自然吸气涡轮增压机原理:利用引擎经过爆炸行程后产生的高温、高速废气,通过特殊形状的名为排气蕉的管道,流入废气侧涡轮,并推动废气侧内的涡轮叶片转动,同时,与废气侧涡轮叶片同轴相连的生气端压缩叶轮,会对流经风格后的生气进行压缩,压缩气体经过中央冷却器冷却后,成为带有一定压力的和高密度的新鲜空气,流经节气门和进气歧管后,进入气缸内燃烧。
机械增压就简单的多了。原则上只要引擎在运转,机械增压就自然而然的产生,引擎转速越高加压力度就越大,好处就是没有涡轮增压所产生的那种迟滞现象,加速感受相当线性化,于自然吸气引擎差别不大。
个人感觉,提前增压,退后结束。是提高汽车马力的重要途径。但是虚拟的极品飞车里,汽车马力都大的惊人,如果觉得马力太大难以控制。那就都减低吧。
氮氧加速装置
气体量是一定的,就看你想让它快速,大马力爆发,还是想长久持续加速了。根据个人喜好吧,这个没有太大技术含量(当然是在极品飞车里了!呵呵)。
传动系统(发挥车辆性能的重点)
齿比
传动系统在极品飞车里只有一项--齿比。
在改装前我们要记住一句话:汽车的提速主要是靠扭矩,极速才是靠功率。获得更大的加速度要增大齿轮比,但要保证驱动功率足够。发动机的转速保持在最有效率的动力区内,而变速箱的功能便是在维持发动机转速不变的前提下,通过不同挡位的变速率来改变车子的行车速度。
变速箱的重要动作就是更换不同的齿轮组合,齿轮比对于直线加速来说太过重要。变速箱与发动机达到合理匹配,才能真正发挥出车子的性能。一台发动机在按照设计诉求制造出来之后,就要按照发动机的动力输出曲线,确切说是扭矩曲线来匹配变速箱。
我们可以把发动机的扭矩曲线大致分为两类,也就是说,汽车大体有如下两类。一类是有明显峰值,整个成山峰状;另一类没有明显的峰值,大体成高原状。
对于这两种不同的输出曲线,我们就需要匹配不同齿比的变速箱来充分发挥发动机的动力特性。对于山峰型的扭矩曲线的特点是能利用扭矩曲线的爬升段,充分发挥加速性能。对于高原型的扭矩曲线,因为它比较平直,扭矩能一直维持在一个较恒定的值上,动力区间很宽,需要变速箱用密齿来迁就它较短的动力区间。
我们的诉求是在这一挡转速到达扭矩输出峰值时,换挡后的转速应落在一个较大的扭矩输出值上,这样的加速才有连贯性,不至于使发动机乏力,降低加速能力。
应用:
汽车在起步时,需要先克服静摩擦力,然后再推动车身前进,这时是需要较大的扭力来帮忙的;于是低档位(一档)时,是类似脚踏车起步的“前面小齿轮,后面大齿轮”的设计,当车速越来越快时,我们不必需要这么大的扭力输出,在高速档时,变速箱将换成类似骑脚踏车时的“后面小齿轮,前面大齿轮”的设定。